منابع مشابه
Mrówka Maximal Almost Disjoint Families for Uncountable Cardinals
We consider generalizations of a well-known class of spaces, called by S. Mrówka, N ∪R, where R is an infinite maximal almost disjoint family (MADF) of countable subsets of the natural numbersN . We denote these generalizations by ψ = ψ(κ,R) for κ ≥ ω. Mrówka proved the interesting theorem that there exists an R such that |βψ(ω,R) \ ψ(ω,R)| = 1. In other words there is a unique free z-ultrafilt...
متن کاملAll Uncountable Regular Cardinals Can Be Inaccessible in Hod
Assuming the existence of a supercompact cardinal and an inaccessible above it, we construct a model of ZFC, in which all uncountable regular cardinals are inacces-
متن کاملDefinable Tree Property Can Hold at All Uncountable Regular Cardinals
Starting from a supercompact cardinal and a measurable above it, we construct a model of ZFC in which the definable tree property holds at all uncountable regular cardinals. This answers a question from [1]
متن کاملCofinality and Measurability of the First Three Uncountable Cardinals
This paper discusses models of set theory without the Axiom of Choice. We investigate all possible patterns of the cofinality function and the distribution of measurability on the first three uncountable cardinals. The result relies heavily on a strengthening of an unpublished result of Kechris: we prove (under AD) that there is a cardinal κ such that the triple (κ, κ+, κ++) satisfies the stron...
متن کاملThe tree property at double successors of singular cardinals of uncountable cofinality
Assuming the existence of a strong cardinal κ and a measurable cardinal above it, we force a generic extension in which κ is a singular strong limit cardinal of any given cofinality, and such that the tree property holds at κ++.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2018
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-018-1688-y